

DATA SHEET DC Leakage Current Sensor

PN: CHD CRS812D5

IPN=10~200mA

Feature

- DC Leakage Current Sensor develops on base of magnetic modulation closed loop principle
- Apply unique patented technology for measure tiny current (mA level)
- Supply voltage: DC ±12V

Advantages

- High accuracy
- Easy installation
- Wide current measuring range
- Optimized response time
- Low power consumption
- High immunity to external interference

Applications

- The current detection of the lift
- DC panel detection
- The signal system
- Current differential detection
- UPS and Inverter applications

- Very good linearity
- Can be customized

1

RoHS

Electrical data: (Ta=25°C, Vc=±15VDC,RL=10KΩ)					
Parmeter	CHD10	CHD20	CHD50	CHD100	CHD200
Ref	CRS812D5	CRS812D5	CRS812D5	CRS812D5	CRS812D5
Rated input Ipn (mA DC)	±10	±20	±50	±100	±200
Measuring range Ip (mA DC)	0∼±20	0~±50	0~±100	0∼±200	0∼±300
Output voltage Vo(V)	DC ±5V, 4-20mA, 0-20mA (±1%)				
Supply voltage VC(V)	DC ±12V~±15V (±5%)				
Accuracy XG(%)	@IPN,T=25°C $\leq \pm 1$				
Offset voltage V _{OE} (mV)	@IP=0,T=25°C <±50				
Offset voltage drift V _{OT} (mV/°C)	@IP=0,10 ~ +60°C $\leq \pm 5.0$				
Linearity error εr(%FS)	≤1.0				
Power consumption IC(mA)	<20				
Insulation voltage (KV)	@50/60Hz, 1min 2.5				

General data:		
Parameter	Value	
Operating temperature TA(°C)	-20+70	

Storage temperature TS(°C)	-40∼+85		
Load resistance (RL)	≥10K		
Mass (g)	500g		
Plastic material	PBT G30/G15, UL94- V0;		
Standards	IEC60950-1:2001		
	EN50178:1998		
	SJ20790-2000		

Remarks:

- During the installation process, on the sensor, close attention should be paid to side core interface is aligned, not forcibly closed.
- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

